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A study is made of slightly nonlinear oscillations resulting from dynamic in- 
stability of a steady-state solidification process. 

The physical properties of solids are determined to a significant extent by macro- 
scopic irregularities in their structure. The presence of such irregularities depends, 
in turn, mainly on features of the solidification process by which the material was obtained. 
Different types of irregularities may be connected with spontaneous oscillatory regimes 
of Crystallization or with the presence of fluctuations in realization of the solidifica- 
tion process (such as with instability of the electrical regime of remelting furnaces, peri- 
odic stoppages of the solidification front, fluctuations in ambient temperature, etc.). 
Occupying a special place is so-called "layered segregation" (a transverse laminated struc- 
ture), when the composition of the solid changes periodically in the direction normal to the 
crystallization front. Meanwhile, the form of the layers reflects the configuration of the 
phase boundary at the moment of their formation. Depending on the technical requirements 
established for the material, it is desirable either to generally avoid such layering by 
maximizing the homogeneity of the composition or (as in the production of certain types of 
semiconductors) to ensure some preassigned properties in the structure (the thickness of 
the layers, the amplitude of the fluctuations in composition). Thus, it is very important 
to determine the causes of transverse layered structures and to formulate a physical model 
which will make it possible to evaluate their characteristics under different conditions 
and to implement specific measures to obtain structures with specified properties. 

In the absence of ordered fluctuations in the external conditions, laminated segregation 
is usually related to the development of a zone of concentrated supercooling ahead of the 
crystallization front [i-5]. However, the construction of detailed models is still at the 
rudimentary stage, and there is as yet no single point of view of the process. We should 
note two directions being taken in theoretical studies in this area. The first is examina- 
tion of the generation of an oscillatory crystallization regime as a result of specific 
features of the two-phase zone ahead of the front, these features in turn being attributable 
to the morphological instability of the front (see [6], for example). However, in this 
case one might also expect the appearance of "dendritic" inhomogeneity along individual 
structural layers - which is far from always actually being the case. The second direction 
of study focuses on the connection between the formation of the transverse structure and 
the capacity of a solid solution to layer into isomorphic phases (see [7], for example). 
However, transverse lamination is also seen in materials which are incapable of such layer- 
ing. 

In most cases, it is natural to regard laminated segregation as the result of the devel- 
opment of dynamic instability of steady-state crystallization in regard to perturbations of 
the velocity of the front. Randomly occurring small perturbations increase exponentially 
with time but later stabilize as a result of nonlinear effects. This leads to the estab- 
lishment of stable fluctuations in velocity which are periodic with a slight degree of non- 
linearity. These fluctuations necessarily lead to fluctuations in the diffusion and heat 
flows, concentration of impurities at the front, and, ultimately the occurrence of trans- 
verse lamination. 

The first hypothesis on the possibility of instability of this nature was evidently 
made in [i]. Experimental data on the general character of such instability and considera- 
tions on the presence of a direct link between compositional irregularities and front- 
velocity fluctuations were presented in [5, 8, 9], for example. Proof of the existence of 
dynamic instability was given in [i0]. We note that from the point of view being discussed 
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it is not difficult, in principle, to also understand certain important features of how 
laminated segregation is affected by convective motions in the melt near the crystalliza- 
tion front and several factors which alter the properties of the material (rotation of the 
crystallization bath, change in the intensity of external body forces, application of an 
external electromagnetic field, etc.). In fact, convective motions have a significant 
effect on the magnitude and character of heat and diffusion flows near the front. These 
flows, in turn, affect the stability of the front. 

Below we examine the crystallization of a binary melt occupying an infinite half-space 
> ~(~), where E(~) is dependent on the time coordinate of the crystallization front. 

Ignoring convectionand adopting the simplifying assumption that the density, diffusion co- 
efficient, and thermophysical properties of the melt are independent of its composition, we 
have the following equations for the concentration of an impurity o and the temperature 

b~ a2~ ~O b~O 

For simplicity, we describe heat removal from the front by means of specially introduced 
constants - the heat-transfer coefficient a and the temperature of an external thermostat 
8Z; this allows us to write the condition of heat balance on the front in the same form as 
in [i0]. With increasing distance from the front and toward the center of the melt, the 
temperature asymptotically approaches the constant value 0~. Since heat conduction pro- 
cesses take place in the melt considerably more rapidly than diffusion processes, it will 
suffice to use a quasisteady representation for the temperature field. In particular, this 
allows us to examine the heat conduction problem separtely from the diffusion problem. As 
a result, we have the relation [I0] 

which connects the temperature on the front with the velocity of the front; henceforth, a 
superimposed dot denotes differentiation with respect to r. 

With increasing distance from the front the concentration of the impurity approaches a 
constant value c~. We write the equation of mass balance on the front by means of an 
equilibrium coefficient for the distribution of the impurity between the phases k, i.e., 

(1 - -  k) oE + Da~/a~ = o, ~ = E (~). ( 3 ) 

Also, we assume that the dependence of the crystallization temperature on the composi- 
tion of the melt at the front is known, i.e., 

Os = f (~s), ~ = ~ 1 ~ = ~ ,  (4) 

where @s is determined from (2). It should be noted that the function f(o) is nonlinear; 
this is very important for stabilization of the growing perturbations in the instability 
region and the establishment of a steady oscillatory regime. 

The first equation in (i), with the boundary condition at infinity and conditions (3) 
and (4) on the front, constitutes a problem the solution of which simultaneously deter- 
mines the concentration field in the melt and the unknown velocity of the front. For a soli- 
dification process independent of time, a constant front velocity is easily obtained from 

(2) and (4): 

u0 = O, = f . (5) 
In + C (0~ - -  0,)1 ' 

I f  t h e  u n i f o r m  m o t i o n  o f  t h e  f r o n t  w i t h  t h e  v e l o c i t y  u 0 i s  d y n a m i c a l l y  u n s t a b l e  and i f  
a p e r i o d i c ,  n e a r l y  h a r m o n i c  o s c i l l a t o r y  r e g i m e  o f  m o t i o n  i s  e s t a b l i s h e d ,  t h e n  t h e  mean v e l o -  
c i t y  u s is generally not equal to u 0 from (5). With uniform motion of the front at the 
velocity u s, the impurity concentration in the melt is described by the function [i0] 

In the general case, assuming that the amplitudes of the oscillations of different quan- 
tities is small compared to the moduli of their mean values, we take 

(% ~) = o0(~, ~) -t- ~1 (~, ~), loll ~ ~ ,  (7) 
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Then the concentration of impurity at the front 

. . . ,  (8) 
where all of the quantities in the right side are evaluated with ~ = Us~ and the function 
o0(~, g) is determined from (6). Without any significant loss of generality we can ass~e 
that f(o) is quadratic. Thus, from (4) we obtain 

0 , - - 0  . . . .  nw=(1- - -k )  (_ l 
" /e c~ (1 - t 0 6= P 7~ (i " k ) ~ j  ' 

C~ 
Ao = or s - - -  - -  , 

k 

(9) 

where we have introduced the parameters 

m -  df p _  c ~ ( 1 - - k )  d"-fl ( 1 0 ) 1 do (~=~ /k 2kin do"- ~--~/h 

We obtain the following from (2) for the deviation of the temperature at the front e s 
from its value 8, corresponding to motion with a constant velocity 

O ~ - - O , - -  p a [ i - / ( O ~ - - O t )  C l ( E - - % )  = pc~[L-~-(O~--Ol) CJ X 
(o~ 4 pC.o) (~. + pCE) (~. + ~,)Cuo) ~ 

~" - I - - -  ~c - -  / -  e :~ - -. .;  . . . ~ ] ,  , e ' - -  

Uo -i- etL~ ] "o u~ , ~ v- 9Cuo 

(11)  

Characteristic values of the quantities entering into the determination of e are [Ii]: 
~ 103,S-lO s J/m2.sec.~ u 0 ~ i0-6-i0 -s m/set, pC ~ lOS,S-fOe J/mS'~ Thus, one usually 

takes ~ ~ 10-2-10 -3 . Ignoring terms on the order of e and higher in (ii), we obtain 

0 s - -  O, = pa- i  [L -~ (O| - -  Oz) C] (us - -  Uo -+- El). ( 1 2 )  

It follows from (I) that the perturbation of concentration o I introduced in (7) should 
satisfy the diffusion equation with a zero condition at an infinite distance from the front. 
The boundary condition on the front and the necessary equation for Ez in (7) are obtained 
by inserting (8) and (12) into (3) and (9). For convenience, we introduce the dimension- 
less variables: 

2 
Uo T Uo k o~ X1 = uo Z1 

t = - - D -  ' x = ~ - ~ ,  q - -  l - - k  c~ ~ E , ,  X I =  - -  ( 1 3 )  
' HO 

and  u s e  them in  w r i t i n g  and a n a l y z i n g  t h e  a b o v e  two r e l a t i o n s .  

Since we are proposing to examine perturbations of relatively small (but finite) ampli- 
tude, to obtain the main informative results it will suffice to consider terms no higher 
than the third order of magnitude with respect to relative amplitudes in these relations 
[12]. With this degree of accuracy we write the relations in dimensionless variables (13) 
as follows: 

- -RX,  q- u~ X , - - c . - - R  ( u* 
Uo \ tto 

a<_. x ,  + P (c, - x,)~ • - - I  x~  
5.v 6 

8q acl ,2 
-~-~ 2c~ ~ X l  - -  2 a x -  X ~ ) =: O' v = 

_ ,  

2 8x" 

l l  o 

(14) 

X ~ - - ( 1 - - l e )  u~ c l -  8Cl { /e ( 2u, 
�9 U o a x  /go 

! ) XI _L 
I 
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0el + ' , 
i ( 1 - - - ~ )  ---~. X 1 - -  -- k X i  - -  ( 1 - -  k) X l X  1 ( 1 - -  k) c lXi  -L 

3 
a%o:~ x,1. T/~ x~ + -21 (1---k)x~Xl"-(1--kt-~.x,2~ 

1 ( l - - k )  0~c~ X~ i 1 03ct X~--O, .x:= us t. 
+ --f ~ 2 ax~ Uo 

(15) 

The quantity c~ and its derivatives with respect to x entering into these equations are 
calculated at x = (Us/U0)t , i.e., boundary conditions (3) and (9), leading to (14) and 
(15), are usually "taken down" on a front moving at a constant velocity u s . In writing (14) 
and (15) we considered that the quantity u3/u 0 - 1 is of the second order of magnitude, and 
we introduced the dimensionless parameter 

R= p[i+(O~--Oz)C]kuo = (0~--0z) k (16)  
~(1--k)mc~ (1--k)mc~ 

We represent dimensionless perturbations of the velocity and coordinates of the crystal- 
lization front in the form of Fourier expansions: 

Xz= ~. ~ nB~e "xt, X~ = ~ B , , e  ~xt, B _ ~ = B ~ ,  (17)  

nn~ 0 ~+~0 
in which I is a certain complex constant. Since Eqs. (17) determine a steady oscillatory 
regime, then Rel = 0. We emphasize that as the unperturbed front we formally examine the 
motion of a front with the velocity u s rather than u 0. Thus, for example, the total per- 
turbation of the dimensionless velocity of the front occurring as a result of instability 
of the solidification process is the sum of the variable part of i I from (17) and the addi- 
tional "zero" harmonic Us/U 0 - 1 already considered in writing (14) and (15). 

Representing ct(t, x) in the form of a two-layer potential and using the method des- 
cribed in [I0], we obtain 

u~ t)  e "zt, A,~ = A,,, 
l l  o 

g (1 ~ - ] / l + 4 n ) ~ )  ] A,~ (y) --- A,~ exp - -  -~- 
(18) 

Insertion of expansions (17) and (18) into Eqs. (14) and (15) leads to an infinite sys- 
tem of algebraic equations for the amplitudes A n and B n which can, in principle, be solved 
with an arbitrarily prescribed accuracy. However, Eqs. (14) and (15) themselves are written 
to within third-order terms for the amplitudes of the first (fundamental) harmonics, which 
corresponds to analysis of slightly nonlinear, nearly harmonic oscillations established 
by "mild" disturbance of a steady solidification process occurring with a constant velocity 
u 0 of the crystallization front. In this case, as can be shown [12], the amplitudes A n and 
B n are proportional to the quantity qn/2, where q = BzB_ I is the square of the amplitude of 
the fundamental harmonic associated with dimensionless perturbation of the front velocity, 
and Us/U 0 - 1 ~ q. Thus, the above-mentioned system of algebraic equations can be analyzed 
within the accuracy limits established only by allowing for the terms of order no greater 
than q~/2. The latter requires the retention of only the first two terms with positive and 
negative n in expansions (17) and (18). As a result, from (14), (15), (17), and (18) we 
obtain a system of only six algebraic equations to determine A n and B n with n = i, 2 and 
A 0 and Us/U 0 - i. We omit the system here due to its awkwardness. We note that the slightly 
nonlinear, nearly harmonic oscillatory regimes of solidification of the type examined here 
are very common in experimental and commercial practice (see [i, 13-15], for example). 

In a linear approximation, the above-noted system of six equations reduces to two 
linear homogeneous algebraic equations for A 1 and B z. The condition of the existence of a 
nontrivial solution for these equations determines the curve of neutral stability R = 0 
obtained earlier in [i0] (the region of instability corresponds to R > 0). Also, from 
here we obtain the linear relation 
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Fig ,  1. Dependence o f  the ampl i tude o f  o s c i l l a t i o n s  of  
c r y s t a l l i z a t i o n - f r o n t  v e l o c i t y  on f requency:  a) k = 0 .3 ;  
b) P = i000, The arrow indicates the direction of the 
increase in the parameter R. 

A 1 = (1 a ~)Ba, ~ (X, k) == 2~ + ! - -  I I --F 4~ 
' 2 k ~ l  + l / 1 - ~ -  4 s  ' ( 1 9 )  

which ,  w i t h  t h e  same a c c u r a c y  as n o t e d  above ,  can be used  in  m o d i f y i n g  s e v e r a l  of  t h e  non-  
linear terms in the system of six equations mentioned previously. Here,'we have the follow- 
ing relations from four of the equations of this system corresponding to the zeroth and 
second harmonics: 

Ao = { - - l + 2 R e [ ( l d - ~ P )  ( '?~k 1--k)~k l - k  )1 } k  ? 

B0 =- u~ 1 =: 1 Uo - ~ { - - A o - - ( 1 - -  2P[q)12)q-i- 

+ 2Re[(l + q0?ql}, 7(~0 -- (1/2) (1 i- 1/1 ~- 4X), 

q, 

(20) 

as well as 

= -- (1 - 2R ) - -  (1 - -  k) + (1 + qD (1 - -  k - -  v) ~' ] - -  (k + 2~0 [1/2 --(I + ~) v - -  Pq~]} q, 

1 
B 2 =-~ {(I --k--?') [I/2--(I + ~)?--P~] + k/2 --(l--k)2~ + (I + ~)(i --k--?)?}q, ?' = ?(2h), (21) 

A = 2 k +  1 + 2 ( I + k ) R L - - ( I + 2 R L ) ? ' .  

Inserting (20) and (21) into the remaining two equations of the system (for the ampli- 
tudes of the first harmonic), we again obtain a system of two homogeneous equations for A~ 
and B I. This system is linear if we regard the value of q, on which depends the coeffi- 
cients of the equations, as fixed. In this case, we take the condition of existence of a 
nontrivial solution in the form 

R?L + kRL --  R~ + 1 + )~ -  ? + Be (2 - -  R)~ - -  ?) -+- Ao[(1 - -  k) L + 1 - -  71 + 

+ B~ Iv - -  1 --VV* (~F + 1) + 2 (1 - -  ~) ~qo* + (1 - -  k) ~. + (~,~)* (q~* + i)1 + 

'72)*Y (q~* + 1) + + A~ D'2--,~V ' --(1 - -~)Zt  + q  

+ l - - y + ( 1  - -k )Z  (1--k)~T*(q)* + 1)- -  (ya),___~_(q~, 4- 1)] + 
2 2 ' ] 

+ 2 P ( 1 - - k r - ? )  [Ao~+A2~*- -B~9+2q(?+  1 ) y + ? ( ? * +  1).7"--' 

q (q~+ q~*/2)--q(q~-:- 1)(q~* + 1) (? + y*) - -  qy ((p 1) 2] -= 0, 
2 J 

(22)  

where the quantities A0, B 0, A 2, and B 2 are determined in (20) and (21), respectively, and 
the asterisk above a quantity denotes complex conjugation. 
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Fig. 2. Dependence of the amplitude of oscillations of crystallization- 
front velocity and the square of the frequency on the parameter R (P = 
i0 a, k = 0.5). 

Fig. 3. Dependence of the amplitude of oscillations of crystallization- 
front velocity and frequency on the parameter k (P = 5.102 , R = 10-2). 

Complex equation (22) is equivalent to two real equations and completely determines 
the possible regimes of slightly nonlinear oscillation - their amplitude characteristic 
q and frequency m = Im ~. 

Satisfaction of the conditions q > 0 and q ~ 1 is connected with the existence of a 
"mild" type of instability and so-called aperiodic bifurcation of the steady solidification 
regime. The amplitude of the oscillations increases with increasing depth into the region 
of instability R > 0 [i0]. At q < 0, stability is disturbed in a "severe" manner, and no 
nearly harmonic crystallization regime is formed. 

Usually in actual systems m ~ 10-2-102 [16, 17]. For simplicity, below we look at the 
example of a low-frequency oscillation (~ ~ i, m ~ k). In this case, we have the follow- 
ing from (20) and (21) for the coefficients with the harmonics with numbers n = 0.2 

O) z 

Ao ,~, q, Bo "~ 2PR-t~o~k-'2q, A2 = q P - -  q, 
2 4 k  

~ (2 ) B ~ = - - P  4k q' A ~ - - B 2 ~ q  -~- + i o  . 

(23) 

In Eqs. (23) we considered terms of the order q in the real part and of the order q~ 
in the imaginary part. The indicated accuracy is determined by Eq. (22). Terms of the 
order qw are omitted from the expressions for A 2 and B2, since the quantities A 2 and B= 
enter only into expressions of the types A2~ and B2~ after picking out the difference A 2 - 
B 2 in Eq. (22). 

Expanding the radicals in (22) into series in small ~ and separating the real and imagi- 
nary parts, we obtain 

2s  = R k  ~, R k  -}- ~' - - - P q o ~ k  -~ (2k ,-}- 1) ( P ~  - -  2k) = O. (24)  

For the squares of the amplitude and frequency from (24) we obtain 

4kR (I + k) [PR (2k + i) -- 21 k 

~ =  P R ( 2 k + I ) - - 2  ' q =  8 P ( l + k )  (25)  

The conditions for realization of oscillations take the form 

O.<R~ 1, P R > 2 ( 2 k +  1)-t (26)  

As follows from (i0), the second condition in (26) means that the liquidus should be 
concave and that its curvature should be fairly great. The d@pendence of the amplitude and 
frequency on the parameters R, P, and k is shown in Figs. 1-3. Figure 1 shows the decrease 
in the amplitude of oscillations of crystallization-front velocity with an increase in fre- 
quency, which was noted in [18]. It is apparent (Fig. 2) that an increase in R is accom- 
panied by an increase in the amplitude of the oscillations. The parameter R is directly 
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proportional to the crystallization rate u 0 (see Eq. (16)), so that an increase in u 0 
leads to an increase in the amplitude of front velocity oscillations and the impurity 
content of the liquid and solid phases. This fact was also noted in several experimental 
studies [15, 19, 20]. An increase in the rate of heat removal from the front (which 
means an increase in the effective heat-transfer coefficient ~) with a constant velocity 
u 0 entails an increase in the temperature gradient in the liquid phase, which leads to a 
decrease in supercooling and oscillation amplitude. This follows from Fig. 3 and from the 
fact that the parameter is inversely proportional to R. 

After calculations, we have the following for the velocity of the crystallization front 
and the impurity distribution along a single crystal 

u ~ uo [1 ~ ~2 __ 2~qr/2 sin ~t ~ P~3qk-~ sin 2~t], 

~ , = c ~ ( 1  ---k) ] - - k  + 2qcos \ u - -~ - ]  ' 

where s i s  t h e  d i s t a n c e  a l o n g  t h e  s i n g l e  c r y s t a l  r e c k o n e d  f rom an a r b i t r a r y  c o o r d i n a t e ,  
where ~ ,  = c~. I t  s h o u l d  be n o t e d  t h a t  a t  ~ ~ 1 t h e  c o e f f i c i e n t  w i t h  t h e  f i r s t  h a r m o n i c  
in  t h e  e x p r e s s i o n  f o r  o ,  i s  s m a l l ,  and t h e  c o r r e s p o n d i n g  t e rm can t h e r e f o r e  be i g n o r e d .  

The p a r a m e t e r  P > 0, so t h a t  u s > u0,  i . e . ,  when an o s c i l l a t o r y  c r y s t a l l i z a t i o n  r eg ime  
d e v e l o p s ,  t h e  mean r a t e  o f  c r y s t a l l i z a t i o n  i n c r e a s e s  f o r  an a r b i t r a r y  s m a l l  v a l u e  o f  d imen-  
s i o n l e s s  f r e q u e n c y  w. 

R e g u l a r  p e r i o d i c  o s c i l l a t i o n s  o f  i m p u r i t y  c o n c e n t r a t i o n  in  t h e  c a s e  o f  c r y s t a l l i z a t i o n  
w i t h  a p l a n a r  f r o n t  have  been n o t e d  in  numerous s t u d i e s  [1,  13 -15 ,  1 8 - 2 5 ] .  However,  most  
o f  them c o n t a i n  i n a d e q u a t e  o r  no i n f o r m a t i o n  on t h e  t e m p e r a t u r e  c o n d i t i o n s  o f  t h e  e x p e r i -  
men t s ,  t h e  c o e f f i c i e n t s  o f  i m p u r i t y  d i s t r i b u t i o n  k, o r  o t h e r  p h y s i c o c h e m i c a l  p a r a m e t e r s .  
A l s o ,  t h e  f i n a l  r e s u l t s  p r e s e n t e d  above  a r e  v a l i d  o n l y  f o r  ~ ~ 1, w h i l e  o b t a i n i n g  s i m i l a r  
r e s u l t s  f o r  a r b i t r a r y  m would r e q u i r e  v e r y  cumbersome n u m e r i c a l  c a l c u l a t i o n s .  Such c a l c u l a -  
t i o n s  may be t h e  s u b j e c t  o f  a s p e c i a l  s t u d y .  None o f  t h i s  p e r m i t s  a more d e t a i l e d  compa- 
r i s o n  t o  be made w i t h  t h e  r e s u l t s  o f  s p e c i f i c  e x p e r i m e n t s .  However,  i t  i s  c l e a r  t h a t  a l l o w -  
ing  f o r  t h e  n o n l i n e a r i t y  o f  Eq. (4 )  g i v e s  e s s e n t i a l l y  new i n f o r m a t i o n  on t h e  p r o c e s s  in  
question. 

NOTATION 

a, diffusivity in the melt; An, Bn, amplitudes of n-th harmonic asociated with per- 
turbation of impurity concentration and coordinate of crystallization front; c~, dimension- 
less perturbation of concentration; C, specific heat of melt; D, diffusion coefficient of 
melt; k, equilibrium coefficient of impurity distribution; m, parameter introduced in (i0); 
L, heat of phase transformation; P, R, parameters introduced in (i0) and (16), respectively; 
q, square of amplitude of fundamental harmonic Bl; t, dimensionless time; u, velocity of 
crystallization front; Us, mean velocity of front; x, dimensionless coordinate; X l, dimen- 
sionless perturbation of coordinate of front; ~, heat-transfer coefficient; y, 8, functions 
introduced in (20) and (19), respectively; g, parameter introduced in (ii); e, temperature; 
8s 8,, temperature of external thermostat and temperature on a crystallization front mov- 
ing at a velocity u0; ~, parameter introduced in (17); ~, coordinate; O, density of melt; 
o, oz, concentration and perturbation of concentration in melt; o,, concentration of impurity 
in crystal; Z, Ez, coordinate of crystallization front and its perturbation; ~, time; ~, 
frequency. Indices: 0 pertains to characteristics of a steady-state regime of solidifica- 
tion with the velocity u0; ~ pertains to characteristics away from the crystallization front; 
s pertains to quantities determined on the phase boundary; a superimposed dot denotes differ- 
entiation with respect to dimensionless time; an asterisk above a quantity denotes the opera- 
tion of complex conjugation. 
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